This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitution of equal classes into element relation. (Contributed by Peter Mazsa, 17-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqelb | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 = 𝐴 ) | |
| 2 | eqeltr | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
| 4 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| 6 | 4 | anbi1i | ⊢ ( ( 𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| 7 | 3 5 6 | 3imtr3i | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 = 𝐵 ) | |
| 9 | eqeltr | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) | |
| 10 | 8 9 | jca | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
| 11 | 7 10 | impbii | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶 ) ↔ ( 𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |