This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmqsres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) | |
| 2 | eldmres2 | ⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ) |
| 4 | 3 | anbi1i | ⊢ ( ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) |
| 5 | elecreseq | ⊢ ( 𝑢 ∈ 𝐴 → [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) = [ 𝑢 ] 𝑅 ) | |
| 6 | 5 | eqeq2d | ⊢ ( 𝑢 ∈ 𝐴 → ( 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ↔ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
| 7 | 6 | pm5.32i | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
| 8 | 7 | anbi2i | ⊢ ( ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
| 9 | an21 | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ) ) | |
| 10 | an12 | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ ( 𝑢 ∈ 𝐴 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) | |
| 11 | 8 9 10 | 3bitr4i | ⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
| 12 | 4 11 | bitri | ⊢ ( ( 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) ∧ 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ) ↔ ( 𝑢 ∈ 𝐴 ∧ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |
| 13 | 12 | rexbii2 | ⊢ ( ∃ 𝑢 ∈ dom ( 𝑅 ↾ 𝐴 ) 𝐵 = [ 𝑢 ] ( 𝑅 ↾ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) |
| 14 | 1 13 | bitrdi | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ ( dom ( 𝑅 ↾ 𝐴 ) / ( 𝑅 ↾ 𝐴 ) ) ↔ ∃ 𝑢 ∈ 𝐴 ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ 𝐵 = [ 𝑢 ] 𝑅 ) ) ) |