This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmqsres2 | |- ( B e. V -> ( B e. ( dom ( R |` A ) /. ( R |` A ) ) <-> E. u e. A E. x e. [ u ] R B = [ u ] R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmqsres | |- ( B e. V -> ( B e. ( dom ( R |` A ) /. ( R |` A ) ) <-> E. u e. A ( E. x x e. [ u ] R /\ B = [ u ] R ) ) ) |
|
| 2 | df-rex | |- ( E. x e. [ u ] R B = [ u ] R <-> E. x ( x e. [ u ] R /\ B = [ u ] R ) ) |
|
| 3 | 19.41v | |- ( E. x ( x e. [ u ] R /\ B = [ u ] R ) <-> ( E. x x e. [ u ] R /\ B = [ u ] R ) ) |
|
| 4 | 2 3 | bitri | |- ( E. x e. [ u ] R B = [ u ] R <-> ( E. x x e. [ u ] R /\ B = [ u ] R ) ) |
| 5 | 4 | rexbii | |- ( E. u e. A E. x e. [ u ] R B = [ u ] R <-> E. u e. A ( E. x x e. [ u ] R /\ B = [ u ] R ) ) |
| 6 | 1 5 | bitr4di | |- ( B e. V -> ( B e. ( dom ( R |` A ) /. ( R |` A ) ) <-> E. u e. A E. x e. [ u ] R B = [ u ] R ) ) |