This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmqsres | |- ( B e. V -> ( B e. ( dom ( R |` A ) /. ( R |` A ) ) <-> E. u e. A ( E. x x e. [ u ] R /\ B = [ u ] R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsg | |- ( B e. V -> ( B e. ( dom ( R |` A ) /. ( R |` A ) ) <-> E. u e. dom ( R |` A ) B = [ u ] ( R |` A ) ) ) |
|
| 2 | eldmres2 | |- ( u e. _V -> ( u e. dom ( R |` A ) <-> ( u e. A /\ E. x x e. [ u ] R ) ) ) |
|
| 3 | 2 | elv | |- ( u e. dom ( R |` A ) <-> ( u e. A /\ E. x x e. [ u ] R ) ) |
| 4 | 3 | anbi1i | |- ( ( u e. dom ( R |` A ) /\ B = [ u ] ( R |` A ) ) <-> ( ( u e. A /\ E. x x e. [ u ] R ) /\ B = [ u ] ( R |` A ) ) ) |
| 5 | elecreseq | |- ( u e. A -> [ u ] ( R |` A ) = [ u ] R ) |
|
| 6 | 5 | eqeq2d | |- ( u e. A -> ( B = [ u ] ( R |` A ) <-> B = [ u ] R ) ) |
| 7 | 6 | pm5.32i | |- ( ( u e. A /\ B = [ u ] ( R |` A ) ) <-> ( u e. A /\ B = [ u ] R ) ) |
| 8 | 7 | anbi2i | |- ( ( E. x x e. [ u ] R /\ ( u e. A /\ B = [ u ] ( R |` A ) ) ) <-> ( E. x x e. [ u ] R /\ ( u e. A /\ B = [ u ] R ) ) ) |
| 9 | an21 | |- ( ( ( u e. A /\ E. x x e. [ u ] R ) /\ B = [ u ] ( R |` A ) ) <-> ( E. x x e. [ u ] R /\ ( u e. A /\ B = [ u ] ( R |` A ) ) ) ) |
|
| 10 | an12 | |- ( ( u e. A /\ ( E. x x e. [ u ] R /\ B = [ u ] R ) ) <-> ( E. x x e. [ u ] R /\ ( u e. A /\ B = [ u ] R ) ) ) |
|
| 11 | 8 9 10 | 3bitr4i | |- ( ( ( u e. A /\ E. x x e. [ u ] R ) /\ B = [ u ] ( R |` A ) ) <-> ( u e. A /\ ( E. x x e. [ u ] R /\ B = [ u ] R ) ) ) |
| 12 | 4 11 | bitri | |- ( ( u e. dom ( R |` A ) /\ B = [ u ] ( R |` A ) ) <-> ( u e. A /\ ( E. x x e. [ u ] R /\ B = [ u ] R ) ) ) |
| 13 | 12 | rexbii2 | |- ( E. u e. dom ( R |` A ) B = [ u ] ( R |` A ) <-> E. u e. A ( E. x x e. [ u ] R /\ B = [ u ] R ) ) |
| 14 | 1 13 | bitrdi | |- ( B e. V -> ( B e. ( dom ( R |` A ) /. ( R |` A ) ) <-> E. u e. A ( E. x x e. [ u ] R /\ B = [ u ] R ) ) ) |