This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a ball. (Contributed by NM, 9-Mar-2007) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elbl2ps | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 2 | elblps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) | |
| 3 | 2 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) |
| 4 | 3 | an32s | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) |
| 5 | 4 | adantrr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) ) |
| 6 | 1 5 | mpbirand | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑃 𝐷 𝐴 ) < 𝑅 ) ) |