This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of elabgt as of 11-May-2025. (Contributed by NM, 7-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom usage. (Revised by GG, 12-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elabgtOLDOLD | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab6g | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 3 | elisset | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 4 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 5 | 4 | imim3i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 6 | 5 | al2imi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 7 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) | |
| 8 | 6 7 | imbitrdi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 9 | 8 | com3r | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) ) |
| 10 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
| 11 | 10 | imim2i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 12 | 11 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 13 | bi2.04 | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ↔ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 14 | 13 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 15 | 19.21v | ⊢ ( ∀ 𝑥 ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 16 | 14 15 | sylbb | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 → 𝜑 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 17 | 12 16 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 18 | 17 | a1i | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
| 19 | 9 18 | impbidd | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) ) |
| 20 | 3 19 | syl | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| 22 | 2 21 | bitrd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |