This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of elabgt as of 11-May-2025. (Contributed by NM, 7-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom usage. (Revised by GG, 12-Oct-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elabgtOLDOLD | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab6g | |- ( A e. B -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
|
| 2 | 1 | adantr | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> A. x ( x = A -> ph ) ) ) |
| 3 | elisset | |- ( A e. B -> E. x x = A ) |
|
| 4 | biimp | |- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
|
| 5 | 4 | imim3i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( ( x = A -> ph ) -> ( x = A -> ps ) ) ) |
| 6 | 5 | al2imi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> A. x ( x = A -> ps ) ) ) |
| 7 | 19.23v | |- ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) |
|
| 8 | 6 7 | imbitrdi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) ) |
| 9 | 8 | com3r | |- ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) -> ps ) ) ) |
| 10 | biimpr | |- ( ( ph <-> ps ) -> ( ps -> ph ) ) |
|
| 11 | 10 | imim2i | |- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ps -> ph ) ) ) |
| 12 | 11 | alimi | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ps -> ph ) ) ) |
| 13 | bi2.04 | |- ( ( x = A -> ( ps -> ph ) ) <-> ( ps -> ( x = A -> ph ) ) ) |
|
| 14 | 13 | albii | |- ( A. x ( x = A -> ( ps -> ph ) ) <-> A. x ( ps -> ( x = A -> ph ) ) ) |
| 15 | 19.21v | |- ( A. x ( ps -> ( x = A -> ph ) ) <-> ( ps -> A. x ( x = A -> ph ) ) ) |
|
| 16 | 14 15 | sylbb | |- ( A. x ( x = A -> ( ps -> ph ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 17 | 12 16 | syl | |- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) |
| 18 | 17 | a1i | |- ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( ps -> A. x ( x = A -> ph ) ) ) ) |
| 19 | 9 18 | impbidd | |- ( E. x x = A -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) ) |
| 20 | 3 19 | syl | |- ( A e. B -> ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) ) |
| 21 | 20 | imp | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| 22 | 2 21 | bitrd | |- ( ( A e. B /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. { x | ph } <-> ps ) ) |