This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg .) (Contributed by NM, 7-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom usage. (Revised by GG, 12-Oct-2024) (Proof shortened by Wolf Lammen, 11-May-2025) (Proof shortened by SN, 1-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elabgt | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab6g | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 2 | pm5.74 | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ↔ ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) ) | |
| 3 | 2 | biimpi | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ∀ 𝑥 ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 5 | albi | ⊢ ( ∀ 𝑥 ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 7 | 1 6 | sylan9bb | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 8 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) | |
| 9 | elisset | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 10 | pm5.5 | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ 𝐵 → ( ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
| 12 | 8 11 | bitrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ 𝜓 ) ) |
| 14 | 7 13 | bitrd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |