This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the eigenvalue function. The range of eigvalT is the set of eigenvalues of Hilbert space operator T . Theorem eigvalcl shows that ( eigvalT )A , the eigenvalue associated with eigenvector A , is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-eigval | ⊢ eigval = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cel | ⊢ eigval | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | cei | ⊢ eigvec | |
| 7 | 1 | cv | ⊢ 𝑡 |
| 8 | 7 6 | cfv | ⊢ ( eigvec ‘ 𝑡 ) |
| 9 | 5 | cv | ⊢ 𝑥 |
| 10 | 9 7 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) |
| 11 | csp | ⊢ ·ih | |
| 12 | 10 9 11 | co | ⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) |
| 13 | cdiv | ⊢ / | |
| 14 | cno | ⊢ normℎ | |
| 15 | 9 14 | cfv | ⊢ ( normℎ ‘ 𝑥 ) |
| 16 | cexp | ⊢ ↑ | |
| 17 | c2 | ⊢ 2 | |
| 18 | 15 17 16 | co | ⊢ ( ( normℎ ‘ 𝑥 ) ↑ 2 ) |
| 19 | 12 18 13 | co | ⊢ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) |
| 20 | 5 8 19 | cmpt | ⊢ ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) |
| 21 | 1 4 20 | cmpt | ⊢ ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 22 | 0 21 | wceq | ⊢ eigval = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |