This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvalfval | |- ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( eigvec ` T ) e. _V |
|
| 2 | 1 | mptex | |- ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) e. _V |
| 3 | ax-hilex | |- ~H e. _V |
|
| 4 | fveq2 | |- ( t = T -> ( eigvec ` t ) = ( eigvec ` T ) ) |
|
| 5 | fveq1 | |- ( t = T -> ( t ` x ) = ( T ` x ) ) |
|
| 6 | 5 | oveq1d | |- ( t = T -> ( ( t ` x ) .ih x ) = ( ( T ` x ) .ih x ) ) |
| 7 | 6 | oveq1d | |- ( t = T -> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) = ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) |
| 8 | 4 7 | mpteq12dv | |- ( t = T -> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| 9 | df-eigval | |- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
|
| 10 | 2 3 3 8 9 | fvmptmap | |- ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |