This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | specval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex | ⊢ ℂ ∈ V | |
| 2 | 1 | rabex | ⊢ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ∈ V |
| 3 | ax-hilex | ⊢ ℋ ∈ V | |
| 4 | oveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) = ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) ) | |
| 5 | f1eq1 | ⊢ ( ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) = ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) → ( ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ↔ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ↔ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ) ) |
| 7 | 6 | notbid | ⊢ ( 𝑡 = 𝑇 → ( ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ↔ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑡 = 𝑇 → { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |
| 9 | df-spec | ⊢ Lambda = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ℂ ∣ ¬ ( 𝑡 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) | |
| 10 | 2 3 3 8 9 | fvmptmap | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( Lambda ‘ 𝑇 ) = { 𝑥 ∈ ℂ ∣ ¬ ( 𝑇 −op ( 𝑥 ·op ( I ↾ ℋ ) ) ) : ℋ –1-1→ ℋ } ) |