This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for two eigenvectors A and B to be orthogonal. Generalization of Equation 1.31 of Hughes p. 49. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigorth | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ∧ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝑇 ‘ 𝐴 ) = ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 2 | oveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐶 ·ℎ 𝐴 ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ↔ ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 4 | 3 | anbi1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ) ) |
| 5 | 4 | anbi1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ) ) |
| 6 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) ) | |
| 7 | 1 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ) |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ) ) |
| 9 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = 0 ) ) |
| 11 | 8 10 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = 0 ) ) ) |
| 12 | 5 11 | imbi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) ↔ ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = 0 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝑇 ‘ 𝐵 ) = ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 14 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐷 ·ℎ 𝐵 ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ↔ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 17 | 16 | anbi1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ) ) |
| 18 | 13 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 21 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 22 | 21 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = 0 ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) |
| 23 | 20 22 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = 0 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) ) |
| 24 | 17 23 | imbi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih 𝐵 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih 𝐵 ) = 0 ) ) ↔ ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) ) ) |
| 25 | oveq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) → ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 26 | 25 | eqeq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) → ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 27 | 26 | anbi1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) → ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 28 | neeq1 | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) → ( 𝐶 ≠ ( ∗ ‘ 𝐷 ) ↔ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ 𝐷 ) ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) → ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ 𝐷 ) ) ) ) |
| 30 | 29 | imbi1d | ⊢ ( 𝐶 = if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) → ( ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( 𝐶 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) ↔ ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ 𝐷 ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) ) ) |
| 31 | oveq1 | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 32 | 31 | eqeq2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 33 | 32 | anbi2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) ) |
| 34 | fveq2 | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( ∗ ‘ 𝐷 ) = ( ∗ ‘ if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ) ) | |
| 35 | 34 | neeq2d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ 𝐷 ) ↔ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ) ) ) |
| 36 | 33 35 | anbi12d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ 𝐷 ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ) ) ) ) |
| 37 | 36 | imbi1d | ⊢ ( 𝐷 = if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) → ( ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( 𝐷 ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ 𝐷 ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) ↔ ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) ) ) |
| 38 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 39 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 40 | 0cn | ⊢ 0 ∈ ℂ | |
| 41 | 40 | elimel | ⊢ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ∈ ℂ |
| 42 | 40 | elimel | ⊢ if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ∈ ℂ |
| 43 | 38 39 41 42 | eigorthi | ⊢ ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ∧ ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = ( if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ·ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ∧ if ( 𝐶 ∈ ℂ , 𝐶 , 0 ) ≠ ( ∗ ‘ if ( 𝐷 ∈ ℂ , 𝐷 , 0 ) ) ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih ( 𝑇 ‘ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0 ) ) |
| 44 | 12 24 30 37 43 | dedth4h | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) ) |
| 45 | 44 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) ∧ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |