This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of the monoid of endofunctions on A . This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just endofunctions - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efmndtset.g | |- G = ( EndoFMnd ` A ) |
|
| Assertion | efmndtset | |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndtset.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | fvex | |- ( Xt_ ` ( A X. { ~P A } ) ) e. _V |
|
| 3 | eqid | |- { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } = { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } |
|
| 4 | 3 | topgrptset | |- ( ( Xt_ ` ( A X. { ~P A } ) ) e. _V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 5 | 2 4 | ax-mp | |- ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) |
| 6 | eqid | |- ( A ^m A ) = ( A ^m A ) |
|
| 7 | eqid | |- ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) = ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) |
|
| 8 | eqid | |- ( Xt_ ` ( A X. { ~P A } ) ) = ( Xt_ ` ( A X. { ~P A } ) ) |
|
| 9 | 1 6 7 8 | efmnd | |- ( A e. V -> G = { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) |
| 10 | 9 | fveq2d | |- ( A e. V -> ( TopSet ` G ) = ( TopSet ` { <. ( Base ` ndx ) , ( A ^m A ) >. , <. ( +g ` ndx ) , ( f e. ( A ^m A ) , g e. ( A ^m A ) |-> ( f o. g ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( A X. { ~P A } ) ) >. } ) ) |
| 11 | 5 10 | eqtr4id | |- ( A e. V -> ( Xt_ ` ( A X. { ~P A } ) ) = ( TopSet ` G ) ) |