This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelTTT.1 | ⊢ ( ⊤ → 𝜑 ) | |
| eelTTT.2 | ⊢ ( ⊤ → 𝜓 ) | ||
| eelTTT.3 | ⊢ ( ⊤ → 𝜒 ) | ||
| eelTTT.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
| Assertion | eelTTT | ⊢ 𝜃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelTTT.1 | ⊢ ( ⊤ → 𝜑 ) | |
| 2 | eelTTT.2 | ⊢ ( ⊤ → 𝜓 ) | |
| 3 | eelTTT.3 | ⊢ ( ⊤ → 𝜒 ) | |
| 4 | eelTTT.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
| 5 | truan | ⊢ ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 ) | |
| 6 | 3anass | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) ↔ ( ⊤ ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
| 7 | truan | ⊢ ( ( ⊤ ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 ∧ 𝜒 ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
| 9 | 1 4 | syl3an1 | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 10 | 8 9 | sylbir | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 11 | 2 10 | sylan | ⊢ ( ( ⊤ ∧ 𝜒 ) → 𝜃 ) |
| 12 | 5 11 | sylbir | ⊢ ( 𝜒 → 𝜃 ) |
| 13 | 3 12 | syl | ⊢ ( ⊤ → 𝜃 ) |
| 14 | 13 | mptru | ⊢ 𝜃 |