This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelT11.1 | ⊢ ( ⊤ → 𝜑 ) | |
| eelT11.2 | ⊢ ( 𝜓 → 𝜒 ) | ||
| eelT11.3 | ⊢ ( 𝜓 → 𝜃 ) | ||
| eelT11.4 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| Assertion | eelT11 | ⊢ ( 𝜓 → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelT11.1 | ⊢ ( ⊤ → 𝜑 ) | |
| 2 | eelT11.2 | ⊢ ( 𝜓 → 𝜒 ) | |
| 3 | eelT11.3 | ⊢ ( 𝜓 → 𝜃 ) | |
| 4 | eelT11.4 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 5 | 3anass | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜓 ) ↔ ( ⊤ ∧ ( 𝜓 ∧ 𝜓 ) ) ) | |
| 6 | truan | ⊢ ( ( ⊤ ∧ ( 𝜓 ∧ 𝜓 ) ) ↔ ( 𝜓 ∧ 𝜓 ) ) | |
| 7 | anidm | ⊢ ( ( 𝜓 ∧ 𝜓 ) ↔ 𝜓 ) | |
| 8 | 5 6 7 | 3bitri | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜓 ) ↔ 𝜓 ) |
| 9 | 1 4 | syl3an1 | ⊢ ( ( ⊤ ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) |
| 10 | 2 9 | syl3an2 | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
| 11 | 3 10 | syl3an3 | ⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜓 ) → 𝜏 ) |
| 12 | 8 11 | sylbir | ⊢ ( 𝜓 → 𝜏 ) |