This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelTTT.1 | |- ( T. -> ph ) |
|
| eelTTT.2 | |- ( T. -> ps ) |
||
| eelTTT.3 | |- ( T. -> ch ) |
||
| eelTTT.4 | |- ( ( ph /\ ps /\ ch ) -> th ) |
||
| Assertion | eelTTT | |- th |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelTTT.1 | |- ( T. -> ph ) |
|
| 2 | eelTTT.2 | |- ( T. -> ps ) |
|
| 3 | eelTTT.3 | |- ( T. -> ch ) |
|
| 4 | eelTTT.4 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
| 5 | truan | |- ( ( T. /\ ch ) <-> ch ) |
|
| 6 | 3anass | |- ( ( T. /\ ps /\ ch ) <-> ( T. /\ ( ps /\ ch ) ) ) |
|
| 7 | truan | |- ( ( T. /\ ( ps /\ ch ) ) <-> ( ps /\ ch ) ) |
|
| 8 | 6 7 | bitri | |- ( ( T. /\ ps /\ ch ) <-> ( ps /\ ch ) ) |
| 9 | 1 4 | syl3an1 | |- ( ( T. /\ ps /\ ch ) -> th ) |
| 10 | 8 9 | sylbir | |- ( ( ps /\ ch ) -> th ) |
| 11 | 2 10 | sylan | |- ( ( T. /\ ch ) -> th ) |
| 12 | 5 11 | sylbir | |- ( ch -> th ) |
| 13 | 3 12 | syl | |- ( T. -> th ) |
| 14 | 13 | mptru | |- th |