This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the closed neighborhood of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clnbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | edgusgrclnbfin | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clnbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | dfclnbgr4 | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑈 ) = ( { 𝑈 } ∪ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin ↔ ( { 𝑈 } ∪ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ Fin ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin ↔ ( { 𝑈 } ∪ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ Fin ) ) |
| 6 | 1 2 | edgusgrnbfin | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 7 | 6 | anbi2d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( { 𝑈 } ∈ Fin ∧ ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) ↔ ( { 𝑈 } ∈ Fin ∧ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) ) |
| 8 | unfib | ⊢ ( ( { 𝑈 } ∪ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ Fin ↔ ( { 𝑈 } ∈ Fin ∧ ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) ) | |
| 9 | snfi | ⊢ { 𝑈 } ∈ Fin | |
| 10 | 9 | biantrur | ⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ↔ ( { 𝑈 } ∈ Fin ∧ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 11 | 7 8 10 | 3bitr4g | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( { 𝑈 } ∪ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 12 | 5 11 | bitrd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |