This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of neighbors of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | edgusgrnbfin | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbusgrf1o.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbusgrf1o.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbusgrf1o | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) |
| 4 | f1ofo | ⊢ ( 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) | |
| 5 | fofi | ⊢ ( ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ∧ 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) | |
| 6 | 5 | expcom | ⊢ ( 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 7 | 4 6 | syl | ⊢ ( 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 9 | 3 8 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin → { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |
| 10 | f1of1 | ⊢ ( 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) | |
| 11 | f1fi | ⊢ ( ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ∧ 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) | |
| 12 | 11 | expcom | ⊢ ( 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) ) |
| 14 | 13 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ( 𝐺 NeighbVtx 𝑈 ) –1-1-onto→ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } → ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) ) |
| 15 | 3 14 | syl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ) ) |
| 16 | 9 15 | impbid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ Fin ) ) |