This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the closed neighborhood of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbusgrf1o.v | |- V = ( Vtx ` G ) |
|
| clnbusgrf1o.e | |- E = ( Edg ` G ) |
||
| Assertion | edgusgrclnbfin | |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbusgrf1o.v | |- V = ( Vtx ` G ) |
|
| 2 | clnbusgrf1o.e | |- E = ( Edg ` G ) |
|
| 3 | 1 | dfclnbgr4 | |- ( U e. V -> ( G ClNeighbVtx U ) = ( { U } u. ( G NeighbVtx U ) ) ) |
| 4 | 3 | eleq1d | |- ( U e. V -> ( ( G ClNeighbVtx U ) e. Fin <-> ( { U } u. ( G NeighbVtx U ) ) e. Fin ) ) |
| 5 | 4 | adantl | |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> ( { U } u. ( G NeighbVtx U ) ) e. Fin ) ) |
| 6 | 1 2 | edgusgrnbfin | |- ( ( G e. USGraph /\ U e. V ) -> ( ( G NeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) |
| 7 | 6 | anbi2d | |- ( ( G e. USGraph /\ U e. V ) -> ( ( { U } e. Fin /\ ( G NeighbVtx U ) e. Fin ) <-> ( { U } e. Fin /\ { e e. E | U e. e } e. Fin ) ) ) |
| 8 | unfib | |- ( ( { U } u. ( G NeighbVtx U ) ) e. Fin <-> ( { U } e. Fin /\ ( G NeighbVtx U ) e. Fin ) ) |
|
| 9 | snfi | |- { U } e. Fin |
|
| 10 | 9 | biantrur | |- ( { e e. E | U e. e } e. Fin <-> ( { U } e. Fin /\ { e e. E | U e. e } e. Fin ) ) |
| 11 | 7 8 10 | 3bitr4g | |- ( ( G e. USGraph /\ U e. V ) -> ( ( { U } u. ( G NeighbVtx U ) ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) |
| 12 | 5 11 | bitrd | |- ( ( G e. USGraph /\ U e. V ) -> ( ( G ClNeighbVtx U ) e. Fin <-> { e e. E | U e. e } e. Fin ) ) |