This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ( R |X. S ) -coset of a set is the Cartesian product of its R -coset and S -coset. (Contributed by Peter Mazsa, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxrn2 | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relecxrn | ⊢ ( 𝐴 ∈ 𝑉 → Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ) | |
| 2 | relxp | ⊢ Rel ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) | |
| 3 | 1 2 | jctir | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∧ Rel ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) ) |
| 4 | brxrn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) | |
| 5 | 4 | el3v23 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 6 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 7 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 〈 𝑥 , 𝑦 〉 ∈ V ) → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝑥 , 𝑦 〉 ) ) |
| 9 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 10 | 9 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 11 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V ) → ( 𝑦 ∈ [ 𝐴 ] 𝑆 ↔ 𝐴 𝑆 𝑦 ) ) | |
| 12 | 11 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ [ 𝐴 ] 𝑆 ↔ 𝐴 𝑆 𝑦 ) ) |
| 13 | 10 12 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ [ 𝐴 ] 𝑅 ∧ 𝑦 ∈ [ 𝐴 ] 𝑆 ) ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 14 | 5 8 13 | 3bitr4d | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ ( 𝑥 ∈ [ 𝐴 ] 𝑅 ∧ 𝑦 ∈ [ 𝐴 ] 𝑆 ) ) ) |
| 15 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ↔ ( 𝑥 ∈ [ 𝐴 ] 𝑅 ∧ 𝑦 ∈ [ 𝐴 ] 𝑆 ) ) | |
| 16 | 14 15 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈 𝑥 , 𝑦 〉 ∈ [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) ) |
| 17 | 16 | eqrelrdv2 | ⊢ ( ( ( Rel [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) ∧ Rel ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) ∧ 𝐴 ∈ 𝑉 ) → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) |
| 18 | 3 17 | mpancom | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ( 𝑅 ⋉ 𝑆 ) = ( [ 𝐴 ] 𝑅 × [ 𝐴 ] 𝑆 ) ) |