This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterize a ternary relation over a range Cartesian product. Together with xrnss3v , this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brxrn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 𝑆 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrn | ⊢ ( 𝑅 ⋉ 𝑆 ) = ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) | |
| 2 | 1 | breqi | ⊢ ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ) |
| 3 | 2 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ) ) |
| 4 | brin | ⊢ ( 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ∧ 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ) ) | |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) ∩ ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ∧ 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ) ) ) |
| 6 | opex | ⊢ 〈 𝐵 , 𝐶 〉 ∈ V | |
| 7 | brcog | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
| 10 | brcnvg | ⊢ ( ( 𝑥 ∈ V ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ) ) | |
| 11 | 6 10 | mpan2 | ⊢ ( 𝑥 ∈ V → ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ) ) |
| 12 | 11 | elv | ⊢ ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ) |
| 13 | brres | ⊢ ( 𝑥 ∈ V → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) ) | |
| 14 | 13 | elv | ⊢ ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) |
| 15 | opelvvg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ) | |
| 16 | 15 | biantrurd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 1st 𝑥 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) ) |
| 17 | 14 16 | bitr4id | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 〈 𝐵 , 𝐶 〉 1st 𝑥 ) ) |
| 18 | br1steqg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 1st 𝑥 ↔ 𝑥 = 𝐵 ) ) | |
| 19 | 17 18 | bitrd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 𝑥 = 𝐵 ) ) |
| 20 | 19 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 1st ↾ ( V × V ) ) 𝑥 ↔ 𝑥 = 𝐵 ) ) |
| 21 | 12 20 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 𝑥 = 𝐵 ) ) |
| 22 | 21 | anbi1cd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) ) |
| 23 | 22 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑥 ( 𝐴 𝑅 𝑥 ∧ 𝑥 ◡ ( 1st ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ) ) |
| 24 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐵 ) ) | |
| 25 | 24 | ceqsexgv | ⊢ ( 𝐵 ∈ 𝑊 → ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐵 ) ) |
| 26 | 25 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑥 ( 𝑥 = 𝐵 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐵 ) ) |
| 27 | 9 23 26 | 3bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 𝑅 𝐵 ) ) |
| 28 | brcog | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) | |
| 29 | 6 28 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ) ) |
| 31 | brcnvg | ⊢ ( ( 𝑦 ∈ V ∧ 〈 𝐵 , 𝐶 〉 ∈ V ) → ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ) ) | |
| 32 | 6 31 | mpan2 | ⊢ ( 𝑦 ∈ V → ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ) ) |
| 33 | 32 | elv | ⊢ ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ) |
| 34 | brres | ⊢ ( 𝑦 ∈ V → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) ) | |
| 35 | 34 | elv | ⊢ ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) |
| 36 | 15 | biantrurd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 2nd 𝑦 ↔ ( 〈 𝐵 , 𝐶 〉 ∈ ( V × V ) ∧ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) ) |
| 37 | 35 36 | bitr4id | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 〈 𝐵 , 𝐶 〉 2nd 𝑦 ) ) |
| 38 | br2ndeqg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 2nd 𝑦 ↔ 𝑦 = 𝐶 ) ) | |
| 39 | 37 38 | bitrd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 𝑦 = 𝐶 ) ) |
| 40 | 39 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 〈 𝐵 , 𝐶 〉 ( 2nd ↾ ( V × V ) ) 𝑦 ↔ 𝑦 = 𝐶 ) ) |
| 41 | 33 40 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ↔ 𝑦 = 𝐶 ) ) |
| 42 | 41 | anbi1cd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 43 | 42 | exbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑦 ( 𝐴 𝑆 𝑦 ∧ 𝑦 ◡ ( 2nd ↾ ( V × V ) ) 〈 𝐵 , 𝐶 〉 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ) ) |
| 44 | breq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐴 𝑆 𝑦 ↔ 𝐴 𝑆 𝐶 ) ) | |
| 45 | 44 | ceqsexgv | ⊢ ( 𝐶 ∈ 𝑋 → ( ∃ 𝑦 ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ↔ 𝐴 𝑆 𝐶 ) ) |
| 46 | 45 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∃ 𝑦 ( 𝑦 = 𝐶 ∧ 𝐴 𝑆 𝑦 ) ↔ 𝐴 𝑆 𝐶 ) ) |
| 47 | 30 43 46 | 3bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ 𝐴 𝑆 𝐶 ) ) |
| 48 | 27 47 | anbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ( ◡ ( 1st ↾ ( V × V ) ) ∘ 𝑅 ) 〈 𝐵 , 𝐶 〉 ∧ 𝐴 ( ◡ ( 2nd ↾ ( V × V ) ) ∘ 𝑆 ) 〈 𝐵 , 𝐶 〉 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 𝑆 𝐶 ) ) ) |
| 49 | 3 5 48 | 3bitrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ( 𝑅 ⋉ 𝑆 ) 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐴 𝑆 𝐶 ) ) ) |