This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ( R |X. S ) -coset of a set is the Cartesian product of its R -coset and S -coset. (Contributed by Peter Mazsa, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecxrn2 | |- ( A e. V -> [ A ] ( R |X. S ) = ( [ A ] R X. [ A ] S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relecxrn | |- ( A e. V -> Rel [ A ] ( R |X. S ) ) |
|
| 2 | relxp | |- Rel ( [ A ] R X. [ A ] S ) |
|
| 3 | 1 2 | jctir | |- ( A e. V -> ( Rel [ A ] ( R |X. S ) /\ Rel ( [ A ] R X. [ A ] S ) ) ) |
| 4 | brxrn | |- ( ( A e. V /\ x e. _V /\ y e. _V ) -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) ) |
|
| 5 | 4 | el3v23 | |- ( A e. V -> ( A ( R |X. S ) <. x , y >. <-> ( A R x /\ A S y ) ) ) |
| 6 | opex | |- <. x , y >. e. _V |
|
| 7 | elecALTV | |- ( ( A e. V /\ <. x , y >. e. _V ) -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> A ( R |X. S ) <. x , y >. ) ) |
|
| 8 | 6 7 | mpan2 | |- ( A e. V -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> A ( R |X. S ) <. x , y >. ) ) |
| 9 | elecALTV | |- ( ( A e. V /\ x e. _V ) -> ( x e. [ A ] R <-> A R x ) ) |
|
| 10 | 9 | elvd | |- ( A e. V -> ( x e. [ A ] R <-> A R x ) ) |
| 11 | elecALTV | |- ( ( A e. V /\ y e. _V ) -> ( y e. [ A ] S <-> A S y ) ) |
|
| 12 | 11 | elvd | |- ( A e. V -> ( y e. [ A ] S <-> A S y ) ) |
| 13 | 10 12 | anbi12d | |- ( A e. V -> ( ( x e. [ A ] R /\ y e. [ A ] S ) <-> ( A R x /\ A S y ) ) ) |
| 14 | 5 8 13 | 3bitr4d | |- ( A e. V -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> ( x e. [ A ] R /\ y e. [ A ] S ) ) ) |
| 15 | opelxp | |- ( <. x , y >. e. ( [ A ] R X. [ A ] S ) <-> ( x e. [ A ] R /\ y e. [ A ] S ) ) |
|
| 16 | 14 15 | bitr4di | |- ( A e. V -> ( <. x , y >. e. [ A ] ( R |X. S ) <-> <. x , y >. e. ( [ A ] R X. [ A ] S ) ) ) |
| 17 | 16 | eqrelrdv2 | |- ( ( ( Rel [ A ] ( R |X. S ) /\ Rel ( [ A ] R X. [ A ] S ) ) /\ A e. V ) -> [ A ] ( R |X. S ) = ( [ A ] R X. [ A ] S ) ) |
| 18 | 3 17 | mpancom | |- ( A e. V -> [ A ] ( R |X. S ) = ( [ A ] R X. [ A ] S ) ) |