This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecqusaddd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) | |
| ecqusaddd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| ecqusaddd.g | ⊢ ∼ = ( 𝑅 ~QG 𝐼 ) | ||
| ecqusaddd.q | ⊢ 𝑄 = ( 𝑅 /s ∼ ) | ||
| Assertion | ecqusaddcl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ∈ ( Base ‘ 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqusaddd.i | ⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) | |
| 2 | ecqusaddd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | ecqusaddd.g | ⊢ ∼ = ( 𝑅 ~QG 𝐼 ) | |
| 4 | ecqusaddd.q | ⊢ 𝑄 = ( 𝑅 /s ∼ ) | |
| 5 | 1 2 3 4 | ecqusaddd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ = ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ) |
| 6 | 1 | elfvexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 7 | nsgsubg | ⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 8 | subgrcl | ⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → 𝑅 ∈ Grp ) | |
| 9 | 1 7 8 | 3syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 10 | 9 | anim1i | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝑅 ∈ Grp ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) |
| 11 | 3anass | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Grp ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 14 | 2 13 | grpcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝐵 ) |
| 15 | 12 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝐵 ) |
| 16 | eqid | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) | |
| 17 | 3 4 2 16 | quseccl0 | ⊢ ( ( 𝑅 ∈ V ∧ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ∈ 𝐵 ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
| 18 | 6 15 17 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → [ ( 𝐴 ( +g ‘ 𝑅 ) 𝐶 ) ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
| 19 | 5 18 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( [ 𝐴 ] ∼ ( +g ‘ 𝑄 ) [ 𝐶 ] ∼ ) ∈ ( Base ‘ 𝑄 ) ) |