This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) Generalization of quseccl for arbitrary sets G . (Revised by AV, 24-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quseccl0.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| quseccl0.h | ⊢ 𝐻 = ( 𝐺 /s ∼ ) | ||
| quseccl0.c | ⊢ 𝐶 = ( Base ‘ 𝐺 ) | ||
| quseccl0.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | ||
| Assertion | quseccl0 | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → [ 𝑋 ] ∼ ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quseccl0.e | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 2 | quseccl0.h | ⊢ 𝐻 = ( 𝐺 /s ∼ ) | |
| 3 | quseccl0.c | ⊢ 𝐶 = ( Base ‘ 𝐺 ) | |
| 4 | quseccl0.b | ⊢ 𝐵 = ( Base ‘ 𝐻 ) | |
| 5 | 1 | ovexi | ⊢ ∼ ∈ V |
| 6 | 5 | ecelqsi | ⊢ ( 𝑋 ∈ 𝐶 → [ 𝑋 ] ∼ ∈ ( 𝐶 / ∼ ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → [ 𝑋 ] ∼ ∈ ( 𝐶 / ∼ ) ) |
| 8 | 2 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝐻 = ( 𝐺 /s ∼ ) ) |
| 9 | 3 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝐶 = ( Base ‘ 𝐺 ) ) |
| 10 | 5 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ∼ ∈ V ) |
| 11 | simpl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → 𝐺 ∈ 𝑉 ) | |
| 12 | 8 9 10 11 | qusbas | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐶 / ∼ ) = ( Base ‘ 𝐻 ) ) |
| 13 | 12 4 | eqtr4di | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → ( 𝐶 / ∼ ) = 𝐵 ) |
| 14 | 7 13 | eleqtrd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ) → [ 𝑋 ] ∼ ∈ 𝐵 ) |