This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecqusaddd.i | |- ( ph -> I e. ( NrmSGrp ` R ) ) |
|
| ecqusaddd.b | |- B = ( Base ` R ) |
||
| ecqusaddd.g | |- .~ = ( R ~QG I ) |
||
| ecqusaddd.q | |- Q = ( R /s .~ ) |
||
| Assertion | ecqusaddcl | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqusaddd.i | |- ( ph -> I e. ( NrmSGrp ` R ) ) |
|
| 2 | ecqusaddd.b | |- B = ( Base ` R ) |
|
| 3 | ecqusaddd.g | |- .~ = ( R ~QG I ) |
|
| 4 | ecqusaddd.q | |- Q = ( R /s .~ ) |
|
| 5 | 1 2 3 4 | ecqusaddd | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) ) |
| 6 | 1 | elfvexd | |- ( ph -> R e. _V ) |
| 7 | nsgsubg | |- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
|
| 8 | subgrcl | |- ( I e. ( SubGrp ` R ) -> R e. Grp ) |
|
| 9 | 1 7 8 | 3syl | |- ( ph -> R e. Grp ) |
| 10 | 9 | anim1i | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ ( A e. B /\ C e. B ) ) ) |
| 11 | 3anass | |- ( ( R e. Grp /\ A e. B /\ C e. B ) <-> ( R e. Grp /\ ( A e. B /\ C e. B ) ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( R e. Grp /\ A e. B /\ C e. B ) ) |
| 13 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 14 | 2 13 | grpcl | |- ( ( R e. Grp /\ A e. B /\ C e. B ) -> ( A ( +g ` R ) C ) e. B ) |
| 15 | 12 14 | syl | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( A ( +g ` R ) C ) e. B ) |
| 16 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 17 | 3 4 2 16 | quseccl0 | |- ( ( R e. _V /\ ( A ( +g ` R ) C ) e. B ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) ) |
| 18 | 6 15 17 | syl2an2r | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ e. ( Base ` Q ) ) |
| 19 | 5 18 | eqeltrrd | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) e. ( Base ` Q ) ) |