This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3optocl.1 | ⊢ 𝑅 = ( 𝐷 × 𝐹 ) | |
| 3optocl.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| 3optocl.3 | ⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| 3optocl.4 | ⊢ ( 〈 𝑣 , 𝑢 〉 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| 3optocl.5 | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) ) → 𝜑 ) | ||
| Assertion | 3optocl | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3optocl.1 | ⊢ 𝑅 = ( 𝐷 × 𝐹 ) | |
| 2 | 3optocl.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 3optocl.3 | ⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3optocl.4 | ⊢ ( 〈 𝑣 , 𝑢 〉 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 5 | 3optocl.5 | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) ) → 𝜑 ) | |
| 6 | 4 | imbi2d | ⊢ ( 〈 𝑣 , 𝑢 〉 = 𝐶 → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) ) |
| 7 | 2 | imbi2d | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜑 ) ↔ ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜓 ) ) ) |
| 8 | 3 | imbi2d | ⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜓 ) ↔ ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜒 ) ) ) |
| 9 | 5 | 3expia | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐹 ) ) → ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜑 ) ) |
| 10 | 1 7 8 9 | 2optocl | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → 𝜒 ) ) |
| 11 | 10 | com12 | ⊢ ( ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐹 ) → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ) |
| 12 | 1 6 11 | optocl | ⊢ ( 𝐶 ∈ 𝑅 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) |
| 13 | 12 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) ∧ 𝐶 ∈ 𝑅 ) → 𝜃 ) |
| 14 | 13 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑅 ) → 𝜃 ) |