This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecinxp | |- ( ( ( R " A ) C_ A /\ B e. A ) -> [ B ] R = [ B ] ( R i^i ( A X. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( R " A ) C_ A /\ B e. A ) -> B e. A ) |
|
| 2 | 1 | snssd | |- ( ( ( R " A ) C_ A /\ B e. A ) -> { B } C_ A ) |
| 3 | dfss2 | |- ( { B } C_ A <-> ( { B } i^i A ) = { B } ) |
|
| 4 | 2 3 | sylib | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( { B } i^i A ) = { B } ) |
| 5 | 4 | imaeq2d | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " ( { B } i^i A ) ) = ( R " { B } ) ) |
| 6 | 5 | ineq1d | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( ( R " ( { B } i^i A ) ) i^i A ) = ( ( R " { B } ) i^i A ) ) |
| 7 | imass2 | |- ( { B } C_ A -> ( R " { B } ) C_ ( R " A ) ) |
|
| 8 | 2 7 | syl | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) C_ ( R " A ) ) |
| 9 | simpl | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " A ) C_ A ) |
|
| 10 | 8 9 | sstrd | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) C_ A ) |
| 11 | dfss2 | |- ( ( R " { B } ) C_ A <-> ( ( R " { B } ) i^i A ) = ( R " { B } ) ) |
|
| 12 | 10 11 | sylib | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( ( R " { B } ) i^i A ) = ( R " { B } ) ) |
| 13 | 6 12 | eqtr2d | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) = ( ( R " ( { B } i^i A ) ) i^i A ) ) |
| 14 | imainrect | |- ( ( R i^i ( A X. A ) ) " { B } ) = ( ( R " ( { B } i^i A ) ) i^i A ) |
|
| 15 | 13 14 | eqtr4di | |- ( ( ( R " A ) C_ A /\ B e. A ) -> ( R " { B } ) = ( ( R i^i ( A X. A ) ) " { B } ) ) |
| 16 | df-ec | |- [ B ] R = ( R " { B } ) |
|
| 17 | df-ec | |- [ B ] ( R i^i ( A X. A ) ) = ( ( R i^i ( A X. A ) ) " { B } ) |
|
| 18 | 15 16 17 | 3eqtr4g | |- ( ( ( R " A ) C_ A /\ B e. A ) -> [ B ] R = [ B ] ( R i^i ( A X. A ) ) ) |