This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the coset of A and the coset of B have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecin0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 | ⊢ ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ [ 𝐴 ] 𝑅 → ¬ 𝑥 ∈ [ 𝐵 ] 𝑅 ) ) | |
| 2 | elecg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 3 | 2 | el2v1 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 5 | elecALTV | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) | |
| 6 | 5 | elvd | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ 𝐵 𝑅 𝑥 ) ) |
| 8 | 7 | notbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝑥 ∈ [ 𝐵 ] 𝑅 ↔ ¬ 𝐵 𝑅 𝑥 ) ) |
| 9 | 4 8 | imbi12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝑥 ∈ [ 𝐴 ] 𝑅 → ¬ 𝑥 ∈ [ 𝐵 ] 𝑅 ) ↔ ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) ) |
| 10 | 9 | albidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ( 𝑥 ∈ [ 𝐴 ] 𝑅 → ¬ 𝑥 ∈ [ 𝐵 ] 𝑅 ) ↔ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) ) |
| 11 | 1 10 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( [ 𝐴 ] 𝑅 ∩ [ 𝐵 ] 𝑅 ) = ∅ ↔ ∀ 𝑥 ( 𝐴 𝑅 𝑥 → ¬ 𝐵 𝑅 𝑥 ) ) ) |