This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrecg.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvrecg.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| dvrecg.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) | ||
| dvrecg.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ 𝑉 ) | ||
| dvrecg.db | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) | ||
| Assertion | dvrecg | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrecg.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvrecg.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 3 | dvrecg.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) | |
| 4 | dvrecg.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ 𝑉 ) | |
| 5 | dvrecg.db | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) | |
| 6 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ℂ ∈ { ℝ , ℂ } ) |
| 8 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝐴 ∈ ℂ ) |
| 9 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ∈ ℂ ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 11 | eldifsni | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → 𝑦 ≠ 0 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 13 | 8 10 12 | divcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝑦 ) ∈ ℂ ) |
| 14 | 10 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
| 15 | 2z | ⊢ 2 ∈ ℤ | |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 2 ∈ ℤ ) |
| 17 | 10 12 16 | expne0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ↑ 2 ) ≠ 0 ) |
| 18 | 8 14 17 | divcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ℂ ) |
| 19 | 18 | negcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ∈ ℂ ) |
| 20 | dvrec | ⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝐴 / 𝑦 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ - ( 𝐴 / ( 𝑦 ↑ 2 ) ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) ) | |
| 23 | oveq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 / ( 𝑦 ↑ 2 ) ) = ( 𝐴 / ( 𝐵 ↑ 2 ) ) ) |
| 25 | 24 | negeqd | ⊢ ( 𝑦 = 𝐵 → - ( 𝐴 / ( 𝑦 ↑ 2 ) ) = - ( 𝐴 / ( 𝐵 ↑ 2 ) ) ) |
| 26 | 1 7 3 4 13 19 5 21 22 25 | dvmptco | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) ) |
| 27 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 28 | eldifi | ⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) → 𝐵 ∈ ℂ ) | |
| 29 | 3 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 30 | 29 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 31 | eldifsn | ⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 32 | 3 31 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 33 | 32 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ≠ 0 ) |
| 34 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℤ ) |
| 35 | 29 33 34 | expne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ≠ 0 ) |
| 36 | 27 30 35 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 37 | 1 29 4 5 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 38 | 36 37 | mulneg1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) |
| 39 | 27 37 30 35 | div23d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) |
| 40 | 39 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) |
| 41 | 40 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - ( ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) |
| 42 | 38 41 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) = - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) |
| 43 | 42 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( - ( 𝐴 / ( 𝐵 ↑ 2 ) ) · 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 44 | 26 43 | eqtrd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ - ( ( 𝐴 · 𝐶 ) / ( 𝐵 ↑ 2 ) ) ) ) |