This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility for an integer quotient. (Contributed by Thierry Arnoux, 17-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdszzq.1 | ⊢ 𝑁 = ( 𝐴 / 𝐵 ) | |
| dvdszzq.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| dvdszzq.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| dvdszzq.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | ||
| dvdszzq.5 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| dvdszzq.6 | ⊢ ( 𝜑 → 𝑃 ∥ 𝐴 ) | ||
| dvdszzq.7 | ⊢ ( 𝜑 → ¬ 𝑃 ∥ 𝐵 ) | ||
| Assertion | dvdszzq | ⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszzq.1 | ⊢ 𝑁 = ( 𝐴 / 𝐵 ) | |
| 2 | dvdszzq.2 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 3 | dvdszzq.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | dvdszzq.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) | |
| 5 | dvdszzq.5 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 6 | dvdszzq.6 | ⊢ ( 𝜑 → 𝑃 ∥ 𝐴 ) | |
| 7 | dvdszzq.7 | ⊢ ( 𝜑 → ¬ 𝑃 ∥ 𝐵 ) | |
| 8 | 3 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 9 | 4 | zcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 | dvdszrcl | ⊢ ( 𝑃 ∥ 𝐴 → ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) | |
| 11 | 10 | simprd | ⊢ ( 𝑃 ∥ 𝐴 → 𝐴 ∈ ℤ ) |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 13 | 12 | zcnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 14 | 8 9 13 5 | ldiv | ⊢ ( 𝜑 → ( ( 𝑁 · 𝐵 ) = 𝐴 ↔ 𝑁 = ( 𝐴 / 𝐵 ) ) ) |
| 15 | 1 14 | mpbiri | ⊢ ( 𝜑 → ( 𝑁 · 𝐵 ) = 𝐴 ) |
| 16 | 6 15 | breqtrrd | ⊢ ( 𝜑 → 𝑃 ∥ ( 𝑁 · 𝐵 ) ) |
| 17 | euclemma | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑁 · 𝐵 ) ↔ ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ) ) | |
| 18 | 17 | biimpa | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑃 ∥ ( 𝑁 · 𝐵 ) ) → ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ) |
| 19 | 2 3 4 16 18 | syl31anc | ⊢ ( 𝜑 → ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ) |
| 20 | orcom | ⊢ ( ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) ↔ ( 𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁 ) ) | |
| 21 | df-or | ⊢ ( ( 𝑃 ∥ 𝐵 ∨ 𝑃 ∥ 𝑁 ) ↔ ( ¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁 ) ) | |
| 22 | 20 21 | sylbb | ⊢ ( ( 𝑃 ∥ 𝑁 ∨ 𝑃 ∥ 𝐵 ) → ( ¬ 𝑃 ∥ 𝐵 → 𝑃 ∥ 𝑁 ) ) |
| 23 | 19 7 22 | sylc | ⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) |