This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-division. (Contributed by BJ, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldiv.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| ldiv.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| ldiv.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| ldiv.bn0 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
| Assertion | ldiv | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 / 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldiv.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | ldiv.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | ldiv.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 4 | ldiv.bn0 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
| 5 | oveq1 | ⊢ ( ( 𝐴 · 𝐵 ) = 𝐶 → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( 𝐶 / 𝐵 ) ) | |
| 6 | 1 2 4 | divcan4d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 7 | 6 | eqeq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( 𝐶 / 𝐵 ) ↔ 𝐴 = ( 𝐶 / 𝐵 ) ) ) |
| 8 | 5 7 | imbitrid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 → 𝐴 = ( 𝐶 / 𝐵 ) ) ) |
| 9 | oveq1 | ⊢ ( 𝐴 = ( 𝐶 / 𝐵 ) → ( 𝐴 · 𝐵 ) = ( ( 𝐶 / 𝐵 ) · 𝐵 ) ) | |
| 10 | 3 2 4 | divcan1d | ⊢ ( 𝜑 → ( ( 𝐶 / 𝐵 ) · 𝐵 ) = 𝐶 ) |
| 11 | 10 | eqeq2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = ( ( 𝐶 / 𝐵 ) · 𝐵 ) ↔ ( 𝐴 · 𝐵 ) = 𝐶 ) ) |
| 12 | 9 11 | imbitrid | ⊢ ( 𝜑 → ( 𝐴 = ( 𝐶 / 𝐵 ) → ( 𝐴 · 𝐵 ) = 𝐶 ) ) |
| 13 | 8 12 | impbid | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐶 / 𝐵 ) ) ) |