This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to assist theorems of || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvds2lem.1 | ⊢ ( 𝜑 → ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ) | |
| dvds2lem.2 | ⊢ ( 𝜑 → ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) | ||
| dvds2lem.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | ||
| dvds2lem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑍 ∈ ℤ ) | ||
| dvds2lem.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑥 · 𝐼 ) = 𝐽 ∧ ( 𝑦 · 𝐾 ) = 𝐿 ) → ( 𝑍 · 𝑀 ) = 𝑁 ) ) | ||
| Assertion | dvds2lem | ⊢ ( 𝜑 → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) → 𝑀 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds2lem.1 | ⊢ ( 𝜑 → ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ) | |
| 2 | dvds2lem.2 | ⊢ ( 𝜑 → ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) | |
| 3 | dvds2lem.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 4 | dvds2lem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑍 ∈ ℤ ) | |
| 5 | dvds2lem.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑥 · 𝐼 ) = 𝐽 ∧ ( 𝑦 · 𝐾 ) = 𝐿 ) → ( 𝑍 · 𝑀 ) = 𝑁 ) ) | |
| 6 | divides | ⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) → ( 𝐼 ∥ 𝐽 ↔ ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐼 ) = 𝐽 ) ) | |
| 7 | divides | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝐾 ∥ 𝐿 ↔ ∃ 𝑦 ∈ ℤ ( 𝑦 · 𝐾 ) = 𝐿 ) ) | |
| 8 | 6 7 | bi2anan9 | ⊢ ( ( ( 𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ) ) → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) ↔ ( ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐼 ) = 𝐽 ∧ ∃ 𝑦 ∈ ℤ ( 𝑦 · 𝐾 ) = 𝐿 ) ) ) |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) ↔ ( ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐼 ) = 𝐽 ∧ ∃ 𝑦 ∈ ℤ ( 𝑦 · 𝐾 ) = 𝐿 ) ) ) |
| 10 | 9 | biimpd | ⊢ ( 𝜑 → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) → ( ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐼 ) = 𝐽 ∧ ∃ 𝑦 ∈ ℤ ( 𝑦 · 𝐾 ) = 𝐿 ) ) ) |
| 11 | reeanv | ⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 · 𝐼 ) = 𝐽 ∧ ( 𝑦 · 𝐾 ) = 𝐿 ) ↔ ( ∃ 𝑥 ∈ ℤ ( 𝑥 · 𝐼 ) = 𝐽 ∧ ∃ 𝑦 ∈ ℤ ( 𝑦 · 𝐾 ) = 𝐿 ) ) | |
| 12 | 10 11 | imbitrrdi | ⊢ ( 𝜑 → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 · 𝐼 ) = 𝐽 ∧ ( 𝑦 · 𝐾 ) = 𝐿 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑧 = 𝑍 → ( 𝑧 · 𝑀 ) = ( 𝑍 · 𝑀 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑧 = 𝑍 → ( ( 𝑧 · 𝑀 ) = 𝑁 ↔ ( 𝑍 · 𝑀 ) = 𝑁 ) ) |
| 15 | 14 | rspcev | ⊢ ( ( 𝑍 ∈ ℤ ∧ ( 𝑍 · 𝑀 ) = 𝑁 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) |
| 16 | 4 5 15 | syl6an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( ( 𝑥 · 𝐼 ) = 𝐽 ∧ ( 𝑦 · 𝐾 ) = 𝐿 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 17 | 16 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 · 𝐼 ) = 𝐽 ∧ ( 𝑦 · 𝐾 ) = 𝐿 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 18 | 12 17 | syld | ⊢ ( 𝜑 → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 19 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) | |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑀 ) = 𝑁 ) ) |
| 21 | 18 20 | sylibrd | ⊢ ( 𝜑 → ( ( 𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿 ) → 𝑀 ∥ 𝑁 ) ) |