This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right multiplication by a nonzero element does not change zeroness in a domain. Compare rrgeq0 . (Contributed by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domneq0r.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| domneq0r.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| domneq0r.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| domneq0r.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| domneq0r.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) | ||
| domneq0r.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | ||
| Assertion | domneq0r | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domneq0r.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domneq0r.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | domneq0r.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | domneq0r.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | domneq0r.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) | |
| 6 | domneq0r.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | |
| 7 | domnring | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 | 5 | eldifad | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 | 1 3 2 8 9 | ringlzd | ⊢ ( 𝜑 → ( 0 · 𝑌 ) = 0 ) |
| 11 | 10 | eqeq2d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ↔ ( 𝑋 · 𝑌 ) = 0 ) ) |
| 12 | 1 2 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 13 | 8 12 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 14 | 1 2 3 4 13 5 6 | domnrcanb | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ↔ 𝑋 = 0 ) ) |
| 15 | 11 14 | bitr3d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑋 = 0 ) ) |