This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-cancellation law for domains, biconditional version of domnrcan . (Contributed by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domnrcan.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| domnrcan.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| domnrcan.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| domnrcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| domnrcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| domnrcan.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ∖ { 0 } ) ) | ||
| domnrcan.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | ||
| Assertion | domnrcanb | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnrcan.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | domnrcan.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | domnrcan.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | domnrcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | domnrcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | domnrcan.z | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ∖ { 0 } ) ) | |
| 7 | domnrcan.r | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) | |
| 8 | oveq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑐 ) = ( 𝑋 · 𝑐 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) ↔ ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) ) ) |
| 10 | eqeq1 | ⊢ ( 𝑎 = 𝑋 → ( 𝑎 = 𝑏 ↔ 𝑋 = 𝑏 ) ) | |
| 11 | 9 10 | imbi12d | ⊢ ( 𝑎 = 𝑋 → ( ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑋 = 𝑏 ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑏 = 𝑌 → ( 𝑏 · 𝑐 ) = ( 𝑌 · 𝑐 ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) ↔ ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) ) ) |
| 14 | eqeq2 | ⊢ ( 𝑏 = 𝑌 → ( 𝑋 = 𝑏 ↔ 𝑋 = 𝑌 ) ) | |
| 15 | 13 14 | imbi12d | ⊢ ( 𝑏 = 𝑌 → ( ( ( 𝑋 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑋 = 𝑏 ) ↔ ( ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) → 𝑋 = 𝑌 ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑋 · 𝑐 ) = ( 𝑋 · 𝑍 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑐 = 𝑍 → ( 𝑌 · 𝑐 ) = ( 𝑌 · 𝑍 ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) ↔ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) ) |
| 19 | 18 | imbi1d | ⊢ ( 𝑐 = 𝑍 → ( ( ( 𝑋 · 𝑐 ) = ( 𝑌 · 𝑐 ) → 𝑋 = 𝑌 ) ↔ ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) → 𝑋 = 𝑌 ) ) ) |
| 20 | 1 2 3 | isdomn4r | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |
| 21 | 7 20 | sylib | ⊢ ( 𝜑 → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) ) |
| 22 | 21 | simprd | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ ( 𝐵 ∖ { 0 } ) ( ( 𝑎 · 𝑐 ) = ( 𝑏 · 𝑐 ) → 𝑎 = 𝑏 ) ) |
| 23 | 11 15 19 22 4 5 6 | rspc3dv | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) → 𝑋 = 𝑌 ) ) |
| 24 | oveq1 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) | |
| 25 | 23 24 | impbid1 | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ↔ 𝑋 = 𝑌 ) ) |