This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right multiplication by a nonzero element does not change zeroness in a domain. Compare rrgeq0 . (Contributed by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domneq0r.b | |- B = ( Base ` R ) |
|
| domneq0r.0 | |- .0. = ( 0g ` R ) |
||
| domneq0r.m | |- .x. = ( .r ` R ) |
||
| domneq0r.x | |- ( ph -> X e. B ) |
||
| domneq0r.y | |- ( ph -> Y e. ( B \ { .0. } ) ) |
||
| domneq0r.r | |- ( ph -> R e. Domn ) |
||
| Assertion | domneq0r | |- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domneq0r.b | |- B = ( Base ` R ) |
|
| 2 | domneq0r.0 | |- .0. = ( 0g ` R ) |
|
| 3 | domneq0r.m | |- .x. = ( .r ` R ) |
|
| 4 | domneq0r.x | |- ( ph -> X e. B ) |
|
| 5 | domneq0r.y | |- ( ph -> Y e. ( B \ { .0. } ) ) |
|
| 6 | domneq0r.r | |- ( ph -> R e. Domn ) |
|
| 7 | domnring | |- ( R e. Domn -> R e. Ring ) |
|
| 8 | 6 7 | syl | |- ( ph -> R e. Ring ) |
| 9 | 5 | eldifad | |- ( ph -> Y e. B ) |
| 10 | 1 3 2 8 9 | ringlzd | |- ( ph -> ( .0. .x. Y ) = .0. ) |
| 11 | 10 | eqeq2d | |- ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> ( X .x. Y ) = .0. ) ) |
| 12 | 1 2 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 13 | 8 12 | syl | |- ( ph -> .0. e. B ) |
| 14 | 1 2 3 4 13 5 6 | domnrcanb | |- ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> X = .0. ) ) |
| 15 | 11 14 | bitr3d | |- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |