This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance in terms of equinumerosity. Example 1 of Enderton p. 146. (Contributed by NM, 15-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bren.1 | ⊢ 𝐵 ∈ V | |
| Assertion | domen | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren.1 | ⊢ 𝐵 ∈ V | |
| 2 | 1 | brdom | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 3 | vex | ⊢ 𝑓 ∈ V | |
| 4 | 3 | f11o | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ∃ 𝑥 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ∃ 𝑓 ∃ 𝑥 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 6 | excom | ⊢ ( ∃ 𝑓 ∃ 𝑥 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑓 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ∃ 𝑥 ∃ 𝑓 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 8 | bren | ⊢ ( 𝐴 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 ) | |
| 9 | 8 | anbi1i | ⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 10 | 19.41v | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) | |
| 11 | 9 10 | bitr4i | ⊢ ( ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑓 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑓 ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 13 | 7 12 | bitr4i | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1→ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |
| 14 | 2 13 | bitri | ⊢ ( 𝐴 ≼ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ≈ 𝑥 ∧ 𝑥 ⊆ 𝐵 ) ) |