This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance in terms of equinumerosity. Example 1 of Enderton p. 146. (Contributed by NM, 15-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bren.1 | |- B e. _V |
|
| Assertion | domen | |- ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren.1 | |- B e. _V |
|
| 2 | 1 | brdom | |- ( A ~<_ B <-> E. f f : A -1-1-> B ) |
| 3 | vex | |- f e. _V |
|
| 4 | 3 | f11o | |- ( f : A -1-1-> B <-> E. x ( f : A -1-1-onto-> x /\ x C_ B ) ) |
| 5 | 4 | exbii | |- ( E. f f : A -1-1-> B <-> E. f E. x ( f : A -1-1-onto-> x /\ x C_ B ) ) |
| 6 | excom | |- ( E. f E. x ( f : A -1-1-onto-> x /\ x C_ B ) <-> E. x E. f ( f : A -1-1-onto-> x /\ x C_ B ) ) |
|
| 7 | 5 6 | bitri | |- ( E. f f : A -1-1-> B <-> E. x E. f ( f : A -1-1-onto-> x /\ x C_ B ) ) |
| 8 | bren | |- ( A ~~ x <-> E. f f : A -1-1-onto-> x ) |
|
| 9 | 8 | anbi1i | |- ( ( A ~~ x /\ x C_ B ) <-> ( E. f f : A -1-1-onto-> x /\ x C_ B ) ) |
| 10 | 19.41v | |- ( E. f ( f : A -1-1-onto-> x /\ x C_ B ) <-> ( E. f f : A -1-1-onto-> x /\ x C_ B ) ) |
|
| 11 | 9 10 | bitr4i | |- ( ( A ~~ x /\ x C_ B ) <-> E. f ( f : A -1-1-onto-> x /\ x C_ B ) ) |
| 12 | 11 | exbii | |- ( E. x ( A ~~ x /\ x C_ B ) <-> E. x E. f ( f : A -1-1-onto-> x /\ x C_ B ) ) |
| 13 | 7 12 | bitr4i | |- ( E. f f : A -1-1-> B <-> E. x ( A ~~ x /\ x C_ B ) ) |
| 14 | 2 13 | bitri | |- ( A ~<_ B <-> E. x ( A ~~ x /\ x C_ B ) ) |