This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for intersection with an image. Theorem 41 of Suppes p. 66. (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imainss | ⊢ ( ( 𝑅 “ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑅 “ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 1 2 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 4 | 19.8a | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) | |
| 5 | 3 4 | sylan2br | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑅 𝑦 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 7 | 6 | anim2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 8 | simprl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 𝑅 𝑦 ) | |
| 9 | 7 8 | jca | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 11 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ) ) | |
| 12 | 2 | elima2 | ⊢ ( 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 13 | 12 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( ◡ 𝑅 “ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 14 | 11 13 | bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 15 | 14 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 16 | 10 15 | sylibr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 17 | 16 | eximi | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 18 | 1 | elima2 | ⊢ ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
| 19 | 18 | anbi1i | ⊢ ( ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 20 | elin | ⊢ ( 𝑦 ∈ ( ( 𝑅 “ 𝐴 ) ∩ 𝐵 ) ↔ ( 𝑦 ∈ ( 𝑅 “ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ) | |
| 21 | 19.41v | ⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ) | |
| 22 | 19 20 21 | 3bitr4i | ⊢ ( 𝑦 ∈ ( ( 𝑅 “ 𝐴 ) ∩ 𝐵 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ 𝑦 ∈ 𝐵 ) ) |
| 23 | 1 | elima2 | ⊢ ( 𝑦 ∈ ( 𝑅 “ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ∧ 𝑥 𝑅 𝑦 ) ) |
| 24 | 17 22 23 | 3imtr4i | ⊢ ( 𝑦 ∈ ( ( 𝑅 “ 𝐴 ) ∩ 𝐵 ) → 𝑦 ∈ ( 𝑅 “ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ) ) |
| 25 | 24 | ssriv | ⊢ ( ( 𝑅 “ 𝐴 ) ∩ 𝐵 ) ⊆ ( 𝑅 “ ( 𝐴 ∩ ( ◡ 𝑅 “ 𝐵 ) ) ) |