This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inlresf | ⊢ ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1o | ⊢ inl : V –1-1-onto→ ( { ∅ } × V ) | |
| 2 | f1ofun | ⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → Fun inl ) | |
| 3 | ffvresb | ⊢ ( Fun inl → ( ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 5 | elex | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ V ) | |
| 6 | opex | ⊢ 〈 ∅ , 𝑥 〉 ∈ V | |
| 7 | df-inl | ⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) | |
| 8 | 6 7 | dmmpti | ⊢ dom inl = V |
| 9 | 5 8 | eleqtrrdi | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl ) |
| 10 | djulcl | ⊢ ( 𝑥 ∈ 𝐴 → ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) | |
| 11 | 9 10 | jca | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ dom inl ∧ ( inl ‘ 𝑥 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) ) |
| 12 | 4 11 | mprgbir | ⊢ ( inl ↾ 𝐴 ) : 𝐴 ⟶ ( 𝐴 ⊔ 𝐵 ) |