This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djulcl | ⊢ ( 𝐶 ∈ 𝐴 → ( inl ‘ 𝐶 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl | ⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) | |
| 2 | opeq2 | ⊢ ( 𝑥 = 𝐶 → 〈 ∅ , 𝑥 〉 = 〈 ∅ , 𝐶 〉 ) | |
| 3 | elex | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | 4 | snid | ⊢ ∅ ∈ { ∅ } |
| 6 | opelxpi | ⊢ ( ( ∅ ∈ { ∅ } ∧ 𝐶 ∈ 𝐴 ) → 〈 ∅ , 𝐶 〉 ∈ ( { ∅ } × 𝐴 ) ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐶 ∈ 𝐴 → 〈 ∅ , 𝐶 〉 ∈ ( { ∅ } × 𝐴 ) ) |
| 8 | 1 2 3 7 | fvmptd3 | ⊢ ( 𝐶 ∈ 𝐴 → ( inl ‘ 𝐶 ) = 〈 ∅ , 𝐶 〉 ) |
| 9 | elun1 | ⊢ ( 〈 ∅ , 𝐶 〉 ∈ ( { ∅ } × 𝐴 ) → 〈 ∅ , 𝐶 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) | |
| 10 | 7 9 | syl | ⊢ ( 𝐶 ∈ 𝐴 → 〈 ∅ , 𝐶 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 11 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 12 | 10 11 | eleqtrrdi | ⊢ ( 𝐶 ∈ 𝐴 → 〈 ∅ , 𝐶 〉 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 13 | 8 12 | eqeltrd | ⊢ ( 𝐶 ∈ 𝐴 → ( inl ‘ 𝐶 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) |