This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djurcl | ⊢ ( 𝐶 ∈ 𝐵 → ( inr ‘ 𝐶 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐶 ∈ 𝐵 → 𝐶 ∈ V ) | |
| 2 | 1oex | ⊢ 1o ∈ V | |
| 3 | 2 | snid | ⊢ 1o ∈ { 1o } |
| 4 | opelxpi | ⊢ ( ( 1o ∈ { 1o } ∧ 𝐶 ∈ 𝐵 ) → 〈 1o , 𝐶 〉 ∈ ( { 1o } × 𝐵 ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝐶 ∈ 𝐵 → 〈 1o , 𝐶 〉 ∈ ( { 1o } × 𝐵 ) ) |
| 6 | opeq2 | ⊢ ( 𝑥 = 𝐶 → 〈 1o , 𝑥 〉 = 〈 1o , 𝐶 〉 ) | |
| 7 | df-inr | ⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) | |
| 8 | 6 7 | fvmptg | ⊢ ( ( 𝐶 ∈ V ∧ 〈 1o , 𝐶 〉 ∈ ( { 1o } × 𝐵 ) ) → ( inr ‘ 𝐶 ) = 〈 1o , 𝐶 〉 ) |
| 9 | 1 5 8 | syl2anc | ⊢ ( 𝐶 ∈ 𝐵 → ( inr ‘ 𝐶 ) = 〈 1o , 𝐶 〉 ) |
| 10 | elun2 | ⊢ ( 〈 1o , 𝐶 〉 ∈ ( { 1o } × 𝐵 ) → 〈 1o , 𝐶 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) | |
| 11 | 5 10 | syl | ⊢ ( 𝐶 ∈ 𝐵 → 〈 1o , 𝐶 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 12 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 13 | 11 12 | eleqtrrdi | ⊢ ( 𝐶 ∈ 𝐵 → 〈 1o , 𝐶 〉 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 14 | 9 13 | eqeltrd | ⊢ ( 𝐶 ∈ 𝐵 → ( inr ‘ 𝐶 ) ∈ ( 𝐴 ⊔ 𝐵 ) ) |