This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djulcl | |- ( C e. A -> ( inl ` C ) e. ( A |_| B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl | |- inl = ( x e. _V |-> <. (/) , x >. ) |
|
| 2 | opeq2 | |- ( x = C -> <. (/) , x >. = <. (/) , C >. ) |
|
| 3 | elex | |- ( C e. A -> C e. _V ) |
|
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 4 | snid | |- (/) e. { (/) } |
| 6 | opelxpi | |- ( ( (/) e. { (/) } /\ C e. A ) -> <. (/) , C >. e. ( { (/) } X. A ) ) |
|
| 7 | 5 6 | mpan | |- ( C e. A -> <. (/) , C >. e. ( { (/) } X. A ) ) |
| 8 | 1 2 3 7 | fvmptd3 | |- ( C e. A -> ( inl ` C ) = <. (/) , C >. ) |
| 9 | elun1 | |- ( <. (/) , C >. e. ( { (/) } X. A ) -> <. (/) , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
|
| 10 | 7 9 | syl | |- ( C e. A -> <. (/) , C >. e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 11 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 12 | 10 11 | eleqtrrdi | |- ( C e. A -> <. (/) , C >. e. ( A |_| B ) ) |
| 13 | 8 12 | eqeltrd | |- ( C e. A -> ( inl ` C ) e. ( A |_| B ) ) |