This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuin | ⊢ ( ( inl “ 𝐴 ) ∩ ( inr “ 𝐵 ) ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( ( inr “ 𝐵 ) ∩ ( inl “ 𝐴 ) ) = ( ( inl “ 𝐴 ) ∩ ( inr “ 𝐵 ) ) | |
| 2 | imassrn | ⊢ ( inr “ 𝐵 ) ⊆ ran inr | |
| 3 | djurf1o | ⊢ inr : V –1-1-onto→ ( { 1o } × V ) | |
| 4 | f1of | ⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → inr : V ⟶ ( { 1o } × V ) ) | |
| 5 | frn | ⊢ ( inr : V ⟶ ( { 1o } × V ) → ran inr ⊆ ( { 1o } × V ) ) | |
| 6 | 3 4 5 | mp2b | ⊢ ran inr ⊆ ( { 1o } × V ) |
| 7 | 2 6 | sstri | ⊢ ( inr “ 𝐵 ) ⊆ ( { 1o } × V ) |
| 8 | incom | ⊢ ( ( inl “ 𝐴 ) ∩ ( { 1o } × V ) ) = ( ( { 1o } × V ) ∩ ( inl “ 𝐴 ) ) | |
| 9 | imassrn | ⊢ ( inl “ 𝐴 ) ⊆ ran inl | |
| 10 | djulf1o | ⊢ inl : V –1-1-onto→ ( { ∅ } × V ) | |
| 11 | f1of | ⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → inl : V ⟶ ( { ∅ } × V ) ) | |
| 12 | frn | ⊢ ( inl : V ⟶ ( { ∅ } × V ) → ran inl ⊆ ( { ∅ } × V ) ) | |
| 13 | 10 11 12 | mp2b | ⊢ ran inl ⊆ ( { ∅ } × V ) |
| 14 | 9 13 | sstri | ⊢ ( inl “ 𝐴 ) ⊆ ( { ∅ } × V ) |
| 15 | 1n0 | ⊢ 1o ≠ ∅ | |
| 16 | 15 | necomi | ⊢ ∅ ≠ 1o |
| 17 | disjsn2 | ⊢ ( ∅ ≠ 1o → ( { ∅ } ∩ { 1o } ) = ∅ ) | |
| 18 | xpdisj1 | ⊢ ( ( { ∅ } ∩ { 1o } ) = ∅ → ( ( { ∅ } × V ) ∩ ( { 1o } × V ) ) = ∅ ) | |
| 19 | 16 17 18 | mp2b | ⊢ ( ( { ∅ } × V ) ∩ ( { 1o } × V ) ) = ∅ |
| 20 | ssdisj | ⊢ ( ( ( inl “ 𝐴 ) ⊆ ( { ∅ } × V ) ∧ ( ( { ∅ } × V ) ∩ ( { 1o } × V ) ) = ∅ ) → ( ( inl “ 𝐴 ) ∩ ( { 1o } × V ) ) = ∅ ) | |
| 21 | 14 19 20 | mp2an | ⊢ ( ( inl “ 𝐴 ) ∩ ( { 1o } × V ) ) = ∅ |
| 22 | 8 21 | eqtr3i | ⊢ ( ( { 1o } × V ) ∩ ( inl “ 𝐴 ) ) = ∅ |
| 23 | ssdisj | ⊢ ( ( ( inr “ 𝐵 ) ⊆ ( { 1o } × V ) ∧ ( ( { 1o } × V ) ∩ ( inl “ 𝐴 ) ) = ∅ ) → ( ( inr “ 𝐵 ) ∩ ( inl “ 𝐴 ) ) = ∅ ) | |
| 24 | 7 22 23 | mp2an | ⊢ ( ( inr “ 𝐵 ) ∩ ( inl “ 𝐴 ) ) = ∅ |
| 25 | 1 24 | eqtr3i | ⊢ ( ( inl “ 𝐴 ) ∩ ( inr “ 𝐵 ) ) = ∅ |