This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuin | |- ( ( inl " A ) i^i ( inr " B ) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | |- ( ( inr " B ) i^i ( inl " A ) ) = ( ( inl " A ) i^i ( inr " B ) ) |
|
| 2 | imassrn | |- ( inr " B ) C_ ran inr |
|
| 3 | djurf1o | |- inr : _V -1-1-onto-> ( { 1o } X. _V ) |
|
| 4 | f1of | |- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr : _V --> ( { 1o } X. _V ) ) |
|
| 5 | frn | |- ( inr : _V --> ( { 1o } X. _V ) -> ran inr C_ ( { 1o } X. _V ) ) |
|
| 6 | 3 4 5 | mp2b | |- ran inr C_ ( { 1o } X. _V ) |
| 7 | 2 6 | sstri | |- ( inr " B ) C_ ( { 1o } X. _V ) |
| 8 | incom | |- ( ( inl " A ) i^i ( { 1o } X. _V ) ) = ( ( { 1o } X. _V ) i^i ( inl " A ) ) |
|
| 9 | imassrn | |- ( inl " A ) C_ ran inl |
|
| 10 | djulf1o | |- inl : _V -1-1-onto-> ( { (/) } X. _V ) |
|
| 11 | f1of | |- ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl : _V --> ( { (/) } X. _V ) ) |
|
| 12 | frn | |- ( inl : _V --> ( { (/) } X. _V ) -> ran inl C_ ( { (/) } X. _V ) ) |
|
| 13 | 10 11 12 | mp2b | |- ran inl C_ ( { (/) } X. _V ) |
| 14 | 9 13 | sstri | |- ( inl " A ) C_ ( { (/) } X. _V ) |
| 15 | 1n0 | |- 1o =/= (/) |
|
| 16 | 15 | necomi | |- (/) =/= 1o |
| 17 | disjsn2 | |- ( (/) =/= 1o -> ( { (/) } i^i { 1o } ) = (/) ) |
|
| 18 | xpdisj1 | |- ( ( { (/) } i^i { 1o } ) = (/) -> ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) ) |
|
| 19 | 16 17 18 | mp2b | |- ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) |
| 20 | ssdisj | |- ( ( ( inl " A ) C_ ( { (/) } X. _V ) /\ ( ( { (/) } X. _V ) i^i ( { 1o } X. _V ) ) = (/) ) -> ( ( inl " A ) i^i ( { 1o } X. _V ) ) = (/) ) |
|
| 21 | 14 19 20 | mp2an | |- ( ( inl " A ) i^i ( { 1o } X. _V ) ) = (/) |
| 22 | 8 21 | eqtr3i | |- ( ( { 1o } X. _V ) i^i ( inl " A ) ) = (/) |
| 23 | ssdisj | |- ( ( ( inr " B ) C_ ( { 1o } X. _V ) /\ ( ( { 1o } X. _V ) i^i ( inl " A ) ) = (/) ) -> ( ( inr " B ) i^i ( inl " A ) ) = (/) ) |
|
| 24 | 7 22 23 | mp2an | |- ( ( inr " B ) i^i ( inl " A ) ) = (/) |
| 25 | 1 24 | eqtr3i | |- ( ( inl " A ) i^i ( inr " B ) ) = (/) |