This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a collection of sets A ( a ) for a e. V to be disjoint. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjord.1 | ||
| disjord.2 | |||
| Assertion | disjord |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjord.1 | ||
| 2 | disjord.2 | ||
| 3 | orc | ||
| 4 | 3 | a1d | |
| 5 | 2 | 3expia | |
| 6 | 5 | con3d | |
| 7 | 6 | impancom | |
| 8 | 7 | ralrimiv | |
| 9 | disj | ||
| 10 | 8 9 | sylibr | |
| 11 | 10 | olcd | |
| 12 | 11 | expcom | |
| 13 | 4 12 | pm2.61i | |
| 14 | 13 | adantr | |
| 15 | 14 | ralrimivva | |
| 16 | 1 | disjor | |
| 17 | 15 16 | sylibr |