This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a collection of sets A ( a ) for a e. V to be disjoint. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjord.1 | |- ( a = b -> A = B ) |
|
| disjord.2 | |- ( ( ph /\ x e. A /\ x e. B ) -> a = b ) |
||
| Assertion | disjord | |- ( ph -> Disj_ a e. V A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjord.1 | |- ( a = b -> A = B ) |
|
| 2 | disjord.2 | |- ( ( ph /\ x e. A /\ x e. B ) -> a = b ) |
|
| 3 | orc | |- ( a = b -> ( a = b \/ ( A i^i B ) = (/) ) ) |
|
| 4 | 3 | a1d | |- ( a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) ) |
| 5 | 2 | 3expia | |- ( ( ph /\ x e. A ) -> ( x e. B -> a = b ) ) |
| 6 | 5 | con3d | |- ( ( ph /\ x e. A ) -> ( -. a = b -> -. x e. B ) ) |
| 7 | 6 | impancom | |- ( ( ph /\ -. a = b ) -> ( x e. A -> -. x e. B ) ) |
| 8 | 7 | ralrimiv | |- ( ( ph /\ -. a = b ) -> A. x e. A -. x e. B ) |
| 9 | disj | |- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) |
|
| 10 | 8 9 | sylibr | |- ( ( ph /\ -. a = b ) -> ( A i^i B ) = (/) ) |
| 11 | 10 | olcd | |- ( ( ph /\ -. a = b ) -> ( a = b \/ ( A i^i B ) = (/) ) ) |
| 12 | 11 | expcom | |- ( -. a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) ) |
| 13 | 4 12 | pm2.61i | |- ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( a = b \/ ( A i^i B ) = (/) ) ) |
| 15 | 14 | ralrimivva | |- ( ph -> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) ) |
| 16 | 1 | disjor | |- ( Disj_ a e. V A <-> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) ) |
| 17 | 15 16 | sylibr | |- ( ph -> Disj_ a e. V A ) |