This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A and B are cosets by relation R : a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relbrcoss | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resdm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
| 2 | 1 | cosseqd | ⊢ ( Rel 𝑅 → ≀ ( 𝑅 ↾ dom 𝑅 ) = ≀ 𝑅 ) |
| 3 | 2 | breqd | ⊢ ( Rel 𝑅 → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) |
| 5 | br1cossres2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 7 | 4 6 | bitr3d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| 8 | 7 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |