This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjlem18 , (general version of the former prtlem17 ). (Contributed by Peter Mazsa, 10-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem17 | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ↔ ∃ 𝑦 ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) ) | |
| 2 | an32 | ⊢ ( ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ↔ ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) ) | |
| 3 | disjlem14 | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) | |
| 4 | eleq2 | ⊢ ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑥 ] 𝑅 ↔ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) | |
| 5 | 4 | biimprd | ⊢ ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
| 6 | 3 5 | syl8 | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
| 7 | 6 | exp4a | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝑥 ] 𝑅 → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) ) |
| 8 | 7 | impd | ⊢ ( Disj 𝑅 → ( ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
| 9 | 2 8 | biimtrrid | ⊢ ( Disj 𝑅 → ( ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
| 10 | 9 | expd | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑦 ∈ dom 𝑅 → ( 𝐴 ∈ [ 𝑦 ] 𝑅 → ( 𝐵 ∈ [ 𝑦 ] 𝑅 → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) ) |
| 11 | 10 | imp5a | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑦 ∈ dom 𝑅 → ( ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |
| 12 | 11 | imp4b | ⊢ ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
| 13 | 12 | exlimdv | ⊢ ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ∃ 𝑦 ( 𝑦 ∈ dom 𝑅 ∧ ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
| 14 | 1 13 | biimtrid | ⊢ ( ( Disj 𝑅 ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) |
| 15 | 14 | ex | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( ∃ 𝑦 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑦 ] 𝑅 ∧ 𝐵 ∈ [ 𝑦 ] 𝑅 ) → 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |