This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjlem17 , (general version of the former prtlem14 ). (Contributed by Peter Mazsa, 10-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem14 | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjALTV5 | ⊢ ( Disj 𝑅 ↔ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) | |
| 2 | 1 | simplbi | ⊢ ( Disj 𝑅 → ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) |
| 3 | rsp2 | ⊢ ( ∀ 𝑥 ∈ dom 𝑅 ∀ 𝑦 ∈ dom 𝑅 ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) ) |
| 5 | eceq1 | ⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) | |
| 6 | 5 | a1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
| 7 | elin | ⊢ ( 𝐴 ∈ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) ↔ ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) ) | |
| 8 | nel02 | ⊢ ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ → ¬ 𝐴 ∈ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) ) | |
| 9 | 8 | pm2.21d | ⊢ ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ → ( 𝐴 ∈ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
| 10 | 7 9 | biimtrrid | ⊢ ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
| 11 | 6 10 | jaoi | ⊢ ( ( 𝑥 = 𝑦 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
| 12 | 4 11 | syl6 | ⊢ ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐴 ∈ [ 𝑦 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |