This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the disjoint relation predicate, cf. dffunALTV5 . (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfdisjALTV5 | ⊢ ( Disj 𝑅 ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisjALTV2 | ⊢ ( Disj 𝑅 ↔ ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ) | |
| 2 | cosscnvssid5 | ⊢ ( ( ≀ ◡ 𝑅 ⊆ I ∧ Rel 𝑅 ) ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( Disj 𝑅 ↔ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑣 ∈ dom 𝑅 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ∧ Rel 𝑅 ) ) |